

Home > Support > Datasheets > T-Series Datasheet > Appendix A - Specifications > A-3 Analog Input

A-3 Analog Input [T-Series Datasheet]

Log in or register to post comments

Please see device-specific subsections below.

A-3-1 T4 Analog Input [T-Series Datasheet]

Log in or register to post comments

Please see subsections below.

A-3-1-1 T4 AIN General Specs [T-Series Datasheet]

Log in or register to post comments

Τ4

This T4 section is under construction. Please check back later for correct information. In the meantime look at the <u>J3 analog</u> inputs specs which are almost identical to the T4.

Table A.3-1. T4 Analog Input Information. Specifications at 25 degrees C and Vusb/Vext = 5.0V, except where noted.

Parameter	Conditions	Min	Typical	Max	Units
General					
USB Cable Length				5	meters
Supply Voltage		4	5	5.25	volts
Supply Current (1)	Hardware V1.2+		50		mA
Operating Temperature		-40		85	°C
Clock Error	-40 to 85 °C			1.5	%
Typ. Command Execution Time (2)	USB high-high	0.6			ms
	USB other	4			ms
VS Outputs					
Typical Voltage (3)	Self-Powered	4.75	5	5.25	volts
	Bus-Powered	4	5	5.25	
Maximum Currrent (3)	Self-Powered		450		mA
	Bus-Powered		50		mA
(1) Typical current drawn by the	 T4 itself, not including a	any user	r connecti	ons.	
 (2) Total typical time to execute a Measured by timing a Windows a function. See Section 3.1 for more 	a single Feedback funct application that perform	tion with	no analo	g input	
(3) These specifications are relat bus-powered describes the host/ with a power supply, all known do computer USB hosts. An example or many PDA ports. The current	ted to the power provide hub, not the U3. Self-po esktop computer USB h e of bus-powered would	owered nosts, ai d be a h	would ap nd some i ub with n	ply to L notebo o powe	JSB hubs ok er supply

Parameter	Conditions	Min	Typical	Max	Units
Analog Inputs					
Typical input Range (4)	Single-Ended, LV	0		2.44	volts
	Differential, LV	-2.44		2.44	volts
	Special, LV	0		3.6	volts
	Single-Ended, HV	-10.3		10.3	volts
	Special, HV	-10.3		20.1	volts
Max AIN Voltage to GND (5)	Valid Readings, LV	-0.3		3.6	volts
	Valid Readings, HV	-12.8		20.1	volts
Max AIN Voltage to GND (6)	No Damage, FIO	-10		10	volts
	No Damage, EIO	-6		6	volts
	No Damage, HV	-40		40	volts
Input Impedance (7)	LV		40		MΩ
	HV		1.3		MΩ
Source Impedance (7)	Long Settling Off, LV			10	kΩ
	Long Settling On, LV			200	kΩ
	Long Settling Off, HV			1	kΩ
	Long Settling On, HV			1	kΩ
Resolution	All Ranges		12		bits
	Single-Ended, LV, 0- 2.44		0.6		mV
	Differential, LV, ±2.44		1.2		mV
	Special, LV, 0-3.6		1.2		mV
	Single-Ended, HV, ±10		5.0		mV
	Special, HV, -10 to +20		10.0		mV
Integral Linearity Error			±0.05		% FS
Differential Linearity Error			±1		counts
Absolute Accuracy (8)	Single-Ended %		±0.13		% FS
	Single-Ended LV volts		±3.2		mV
	Single-Ended HV volts		±26.8		mV
	Differential %		±0.25		% FS
	Differential LV volts		±6.4		mV
	Differential HV volts		N/A		
	Special 0-3.6 %		±0.25		% FS
	Special LV volts		±6.4		mV
	Special HV volts		±53.6		mV
Temperature Drift			15		ppm/°C
Noise (Peak-To-Peak) (9)	Quick Sample Off		±1		counts
	Quick Sample On		±2		counts
Effective Resolution (RMS) (10)	Quick Sample Off		>12		bits
Noise-Free Resolution (9)	Quick Sample Off		11		bits
Command/Response Speed	See Section 3.1				
Stream Performance	See Section 3.2				
 * LV specs refer to low voltage at HV. HV specs refer to high volta only. (4) Note that these are typical inp inputs might not go all the way to DACT dischard on bottmere way to 	ge analog inputs which a put ranges. The actual m 0.0 as discussed in <u>Sec</u>	ire ava iinimur	ilable on	the U3	B-HV
DAC1 disabled on hardware vers (5) This is the maximum voltage measurements. Note that a differ meaning that the positive channe no low-voltage AIN pin can go m (6) Maximum voltage, compared level is the same whether the dev	on any AIN pin compared rential channel has a min el can be 2.44 volts less t ore than 0.3 volts below to ground, to avoid dama	imum v han the ground	voltage o e negativ I.	f -2.44 e chan	inel, but
 (7) The low-voltage analog inputs presenting a capacitive load to the 	s essentially connect dire				

(8) Absolute error includes INL,VS=5.0V. To equate the percen					
percentage. For a single-ended					
about 2.4 volts, so 2.4 * 0.0013					
using the normal range the spar	-	-		-	
Differential readings are not cali					
(9) Measurements taken with Al				91 from	Analog
Devices) or GND. All "counts" d					
determined by taking 128 readir	-				
maximum value.	•				
(10) Effective (RMS) data is dete	ermined from the standa	ard devia	tion of 12	28 read	ings. In
other words, this data represent					-
all readings.					
Parameter	Conditions	Min	Typical	Max	Units
Analog Outputs (DAC)					
Nominal Output Range (11)	No Load	0.04		4.95	volts
	@ ±2.5 mA	0.225			volts
Resolution			10		bits
Absolute Accuracy	5% to 95% FS		±5		% FS
Integral Linearity Error			±1		counts
Differential Linearity Error			±1		counts
Max Output Current (12)	@ 2.0V		30		mA
Error Due To Loading (12)	@ 100 µA	-	0.1		%
	@ 1 mA		1		%
Source Impedance (12)			50		Ω
Short Circuit Current (12,13)	5V to GND		50		mA
Cutoff Frequency (14)	-3 dB	-	16		Hz
Time Constant (14)	-3 0.0		10		
Time Constant (14)			10		ms
Distitut I/O Timore Countere					
Digital I/O, Timers, Counters		0.0		0.0	velte
Low Level Input Voltage		-0.3		0.8	volts
Hight Level Input Voltage	510	2		5.8	volts
Maximum Input Voltage (15)	FIO	-10		10	volts
	EIO/CIO	-6	-	6	volts
Output Low Voltage (16)	No Load		0		volts
FIO	Sinking 1 mA	_	0.55		volts
EIO/CIO	Sinking 1 mA		0.18		volts
EIO/CIO	Sinking 5 mA		0.9		volts
Output High Voltage (16)	No Load		3.3		volts
FIO	Sourcing 1 mA		2.75		volts
EIO/CIO	Sourcing 1 mA		3.12		volts
EIO/CIO	Sourcing 5 mA		2.4		volts
Short Circuit Current (16)	FIO		6		mA
	EIO/CIO		18		mA
nput Impedance	Pull-up to 3.3V		100		kΩ
Output Impedance (16)	FIO		550		Ω
	EIO/CIO		180		Ω
Counter Input Frequency (17)	Hardware V1.21+			8	MHz
nput Timer Total Edge Rate	No Stream, V1.21+			30000	edges/s

and GND). The specifications assume Vs is 5.0 volts. Also, the ability of the DAC output buffer to driver voltages close to the power rails, decreases with increasing output current, but in most applications the output is not sinking/sourcing much current as the output voltage approaches GND.

(12) If the output is set to 3.5 volts and sourcing 30 mA, there will be about 2.0 volts at the DAC pin due to the 50 ohms of series impedance. Each DAC output is driven by a channel on an AD8544 op-amp, powered by VS & GND, and then goes through protection circuitry that includes 50 ohms of series impedance. The max output current is determined by 3 main factors: short circuit current, ability of AD8544 to sink/source near

13) Continuous short circuit will not cause damage.	
14) The DAC outputs are creating by filtering PWM signals, and the 2nd order 16 Hz	
putput filter works great for the default PWM frequency of 732 Hz, but with lower	
requency timer clocks the DAC outputs will be noisier. See Section 2.7 for more	
details. Time constant is the time it take for the output to settle 63% of the way towar	ds
a new value.	
15) Maximum voltage to avoid damage to the device. Protection works whether the	
device is powered or not, but continuous voltages over 5.8 volts or less than -0.3 volt	s
are not recommended when the U3 is unpowered, as the voltage will attempt to supp	ly
operating power to the U3 possible causing poor start-up behavior.	
16) These specifications provide the answer to the question: "How much current can	
he digital I/O sink or source?". For instance, if EIO0 is configured as output-high and	
shorted to ground, the current sourced by EIO0 into ground will be about 18 mA	
3.3/180). If connected to a load that draws 5 mA, EIO0 can provide that current but t	he
voltage will droop to about 2.4 volts instead of the nominal 3.3 volts. If connected to a	L
180 ohm load to ground, the resulting voltage and current will be about 1.65 volts @ 9	9
nA.	
17) Hardware counters. 0 to 3.3 volt square wave. Limit 2 MHz with older hardware	
versions.	
18) To avoid missing edges, keep the total number of applicable edges on all applica	able
imers below this limit. See Section 2.9 for more information. Limit 10000 with older	
nardware versions.	

A-3-1-2 T4 Noise and Resolution [T-Series Datasheet]

Log in or register to post comments

T-series Appendix Analog Input Noise and Resolution (Referencable)

ADC Noise and Resolution

T-series devices use an internal analog-to-digital converter (ADC) to convert analog voltage into digital representation. The ADC reports an analog voltage in terms of ADC counts, where a single ADC count is the smallest change in voltage that will affect the reported ADC value. A single ADC count is also known as the converter's least significant bit (LSB) voltage. The ADC's resolution defines the number of discrete voltages represented over a given input range. For example, a 16-bit ADC with a ±10 input range can report 65536 discrete voltages (2^{16}) and has an LSB voltage of 0.305 mV ($20 \text{ V} \div 2^{16}$).

The stated resolution for an ADC is a theoretical, best-case value assuming no channel noise. In reality, every ADC works in conjunction with external circuitry (amplifiers, filters, etc.) which all possess some level of inherent noise. The noise of supporting hardware, in addition to noise of the ADC itself, all contribute to the channel resolution. In general, the resolution for an ADC and supporting hardware will be less than what is stated for the ADC. The combined resolution for an in-system ADC is termed effective resolution. Simply put, the effective resolution is the equivalent resolution where analog voltages less than the LSB voltage are no longer differentiable from the inherent hardware noise.

The effective resolution is closely related to the error free code resolution (EFCR) or *flicker-free* code resolution. The EFCR represents the resolution on a channel immune to "bounce" or "flicker" from the inherent system noise. The EFCR is not reported in this appendix. However, it may be closely approximated by the following equation:

EFCR = effective resolution - 2.7 bits [1]

The T4 and the T7 offer user-selectable effective resolution through the resolution index parameter on any one AIN channel. Internally, the ADC hardware uses modified sampling methods to reduce noise. Valid resolution index values are:

- 0-5 for the T4
- 0-8 for the T7
- 0-12 for the T7-Pro [2][3]

Increasing the resolution index value will improve the channel resolution, but doing so will usually extend channel sampling times. See section 14.0 AIN for more information on the resolution index parameter and its use.

T4 Appendix Analog Input Noise and Resolution (Referencable)

The T4 is a 12-bit class device. See <u>Appendix A-1</u> for typical effective resolution.

A-3-1-3 T4 Signal Range [T-Series Datasheet]

Log in or register to post comments

T4 AIN Signal Range

Analog inputs on the T4 are single-ended only. That means the voltage of a given input terminal is acquired versus GND, and thus the signal range is simply the same as the analog input ranges of $\pm 10V$ or 0-2.5V discussed in various places. See <u>Appendix A-3</u> for further analog input specs.

A-3-2 T7 Analog Input [T-Series Datasheet]

Log in or register to post comments

Please see the subsections below.

A-3-2-1 T7 AIN General Specs [T-Series Datasheet]

Log in or register to post comments

T7

 Table A.3-2.
 T7 Analog Input Information.
 All specs at room temperature unless otherwise noted.

	Conditions	Min	Typical	Max	Units
Typical Input Range [1]	Gain=1	- 10.5		10.1	Volts
Max AIN Voltage to GND [2]	Valid Readings	- 11.5		11.5	Volts
Max AIN Voltage to GND [3]	No Damage	-20		20	Volts
Input Bias Current [4]			20		nA
Input Impedance [4]			1		GΩ
Max Source Impedance [4]			1		kΩ
Integral Linearity Error	Range=10, 1, 0.1			±0.01	%FS
	Range=0.01			±0.1	%FS
Absolute Accuracy	Range=10, 1, 0.1			±0.01	%FS
	Range=10			±2000	μV
	Range=1			±200	μV
	Range=0.1			±20	μV
	Range=0.01			±0.1	%FS
	Range=0.01			±20	μV
Temperature Coefficient			15		ppm/°C
Channel Crosstalk [5]	< 1kHz	1	-100		dB
••	1kHz - 50kHz		20		dB/dec
	İ	1	1		

Frequency [6]	Gain=1, 10		445		kHz
	Gain=100		337	1	kHz
	Gain=1000		63		kHz
High-Res ADC -3dB	Soo Noto #7				
Frequency [7]	See Note #7				
Noise (Peak-To-Peak)	See A-3-2			<1	μV
Effective Resolution (RMS)	See A-3-2			22	bits
Noise-Free Resolution	See A-3-2			20	bits
[1] Differential or single-er	nded				
above, and for differential <u>Range</u> . Further, if a channel readings on other channel channels are on one front- front-end mux, an overvoli affect only even or only oc [3] Maximum voltage, com device. Protection level is not. [4] The key specification h long as your source imped	el has over 13. s could be affe- end mux and a tage (>13V) on d channels. pared to groun the same whet ere is the maxi dance is not over	0 volt cted. all odd a sin d, to her th mum	s compa Because I channe gle chan avoid da ne device source i	ared to g all events all br>events all events all events all events all events all events a	ground, second generall o the rered or
substantial errors due to ir greater than this value, mo [5] Typical crosstalk on a g adjacent AIN pin. An adjar location not channel numb [6] This is the bandwidth of than this will go through th the digitized waveform. Fr as ResolutionIndex and an noise. For AC measuremen nyquist point can be remo components above the ny as they will alias. If unwar nyquist point and analog of expected to have sufficien noise level, then an extern an anti-alias or anti-aliasin [7] The fixed -3dB frequen ADC (ResolutionIndex = 1 Pro (ResolutionIndex = 9- The frequency response a	pre settling time grounded AIN p cent AIN pin ref per, e.g. AINO-AII of the analog have analog syste or DC measure veraging can be ents, frequency ved after digitiz quist point mus need signals wit sutoff frequency t magnitude to hal hardware filt g filter). cies from note -8), but the hig 12) has filtering	lems. <u>a migh</u> pin, wi rers to var are rowa m to t ment be used comp ing, b t be r h frec v are e be ab cer mu 6 app h-reso	For sound the need in 200 pp of the 200 pp o	rce imp eded. o sine we exer chat a pairs. frequent and be of little of id of ex below the ency before betweet l, and that accepta ed (ofte high-sp DC on er frequent	Il be no bedance vave on annel cies less part of concern thra he digitizing en the hey are able en called beed the T7- encies.

See also: Appendix A-3-2 Noise and Resolution

A-3-2-2 T7 Noise and Resolution [T-Series Datasheet]

Log in or register to post comments

T-series Appendix Analog Input Noise and Resolution (Referencable)

ADC Noise and Resolution

T-series devices use an internal analog-to-digital converter (ADC) to convert analog voltage into digital representation. The ADC reports an analog voltage in terms of ADC counts, where a single ADC count is the smallest change in voltage that will affect the reported ADC value. A single ADC count is also known as the converter's least significant bit (LSB) voltage. The ADC's resolution defines the number of discrete voltages represented over a given input range. For example, a 16-bit ADC with a ±10 input range can report 65536 discrete voltages (2^{16}) and has an LSB voltage of 0.305 mV ($20 \text{ V} \div 2^{16}$).

The stated resolution for an ADC is a theoretical, best-case value assuming no channel noise. In reality, every ADC works in conjunction with external circuitry (amplifiers, filters, etc.) which all possess some level of inherent noise. The noise of supporting hardware, in addition to noise of the ADC itself, all contribute to the channel resolution. In general, the resolution for an ADC and supporting hardware will be less than what is stated for the ADC. The combined resolution for an in-system ADC is termed effective resolution. Simply put, the effective resolution is the equivalent resolution where analog voltages less than the LSB voltage are no longer differentiable from the inherent hardware noise.

The effective resolution is closely related to the error free code resolution (EFCR) or *flicker-free* code resolution. The EFCR represents the resolution on a channel immune to "bounce" or "flicker" from the inherent system noise. The EFCR is not reported in this appendix. However, it may be closely approximated by the following equation:

EFCR = effective resolution - 2.7 bits [1]

The T4 and the T7 offer user-selectable effective resolution through the resolution index parameter on any one AIN channel. Internally, the ADC hardware uses modified sampling methods to reduce noise. Valid resolution index values are:

- 0-5 for the T4
- 0-8 for the T7
- 0-12 for the T7-Pro [2][3]

Increasing the resolution index value will improve the channel resolution, but doing so will usually extend channel sampling times. See section 14.0 AIN for more information on the resolution index parameter and its use.

T7 Appendix Analog Input Noise and Resolution (Referencable)

T7

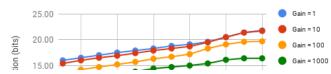
The T7 has a 16-bit ADC. The T7-Pro has the same 16-bit ADC plus a lower speed 24-bit sigma-delta ADC.

Noise and Resolution Data

The data shown below summarizes typical effective resolutions and expected channel sampling times over all resolution index values. Data for the T7 and T7-Pro data are combined and presented together for convenience, where resolution index values 9-12 only apply to the T7-Pro.

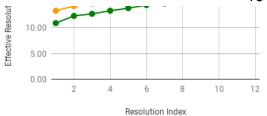
The AIN sampling time is the typical amount of time required for the ADC hardware to make a single analog to digital conversion on any channel and is reported in milliseconds per sample. The AIN sampling time does not include command/response and overhead time associated with the host computer/application.

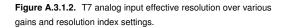
Noise and Resolution Test procedure


Noise and resolution data was generated by collecting 512 successive voltage readings, using a short jumper between the test channel and ground. The resulting data set represents typical noise measured on any one analog input channel in ADC counts. The effective resolution is calculated by subtracting the RMS channel noise (represented in bits) from 16-bits.

Effective Resolution = 16 bits - log₂ (RMS Noise [in ADC counts])

 Table A.3.1.1.
 T7 resolution data. Effective resolution and sampling times for various gains and resolution index settings. Resolution index settings 9-12 apply to the T7-Pro only.


Resolution	Effective	Effective	AIN Sample		
Index	Resolution	Resolution	Time		
	[bits]	[µV]	[ms/sample]		
Gain/Range: 1/±10V					


Effective Resolution Vs Resolution Index

19 May 2019

	100	010	0.04
1	16.0	316	0.04
2	16.5	223	0.04
3	17.0	158	0.06
4	17.5	112	0.09
5	17.9	85	0.16
6	18.3	64	0.29
7	18.8	45	0.56
8	19.1	37	1.09
9	19.6	26	3.50
10	20.5	14	13.4
11	21.4	7.5	66.2
12	21.8	5.7	159
		ge: 10/±1V	T
1	15.4	48	0.23
2	16.0	32	0.23
3	16.5	22	0.55
4	16.9	17	0.58
5	17.4	12	1.15
6	17.9	8.5	2.28
7	18.3	6.4	2.55
8	18.7	4.9	3.08
9	19.5	2.8	3.50
10	20.5	1.4	13.4
11	21.4	0.7	66.2
12	21.7	0.6	159
		e: 100/±0.1V	
1	13.3	21	1.03
2	14.2	11	2.03
3	14.7	7.8	5.05
4		5.5	5.08
4	15.2	5.5 3.9	5.08 5.15
4 5	15.2 15.7	3.9	5.15
4 5 6	15.2 15.7 16.3	3.9 2.6	5.15 10.28
4 5	15.2 15.7 16.3 16.7	3.9 2.6 1.9	5.15 10.28 10.55
4 5 6 7 8	15.2 15.7 16.3 16.7 17.2	3.9 2.6 1.9 1.4	5.15 10.28 10.55 11.08
4 5 6 7 8 9	15.2 15.7 16.3 16.7 17.2 18.3	3.9 2.6 1.9 1.4 0.6	5.15 10.28 10.55 11.08 3.50
4 5 6 7 8 9 10	15.2 15.7 16.3 16.7 17.2 18.3 19.1	3.9 2.6 1.9 1.4 0.6 0.4	5.15 10.28 10.55 11.08 3.50 13.4
4 5 6 7 8 9 10 11	15.2 15.7 16.3 16.7 17.2 18.3 19.1 19.6	3.9 2.6 1.9 1.4 0.6 0.4 0.3	5.15 10.28 10.55 11.08 3.50 13.4 66.2
4 5 6 7 8 9 10	15.2 15.7 16.3 16.7 17.2 18.3 19.1 19.6 19.7	3.9 2.6 1.9 1.4 0.6 0.4 0.3 0.2	5.15 10.28 10.55 11.08 3.50 13.4 66.2 159
4 5 6 7 8 9 10 11 12	15.2 15.7 16.3 16.7 17.2 18.3 19.1 19.6 19.7 Gain/Range	3.9 2.6 1.9 1.4 0.6 0.4 0.3 0.2 : 1000/±0.01	5.15 10.28 10.55 11.08 3.50 13.4 66.2 159 V
4 5 6 7 8 9 10 11 12 1	15.2 15.7 16.3 16.7 17.2 18.3 19.1 19.6 19.7 Gain/Range 10.9	3.9 2.6 1.9 1.4 0.6 0.4 0.3 0.2 : 1000/±0.01 11	5.15 10.28 10.55 11.08 3.50 13.4 66.2 159 V 5.03
4 5 6 7 8 9 10 11 12 1 2	15.2 15.7 16.3 16.7 17.2 18.3 19.1 19.6 19.7 Gain/Range 10.9 12.3	3.9 2.6 1.9 1.4 0.6 0.4 0.3 0.2 : 1000/±0.01 11 4.1	5.15 10.28 10.55 11.08 3.50 13.4 66.2 159 V 5.03 10.0
4 5 6 7 8 9 10 11 12 1 2 3	15.2 15.7 16.3 16.7 17.2 18.3 19.1 19.6 19.7 Gain/Range 10.9 12.3 12.7	3.9 2.6 1.9 1.4 0.6 0.4 0.3 0.2 : 1000/±0.01 11 4.1 3.1	5.15 10.28 10.55 11.08 3.50 13.4 66.2 159 V 5.03 10.0 10.1
4 5 6 7 8 9 10 11 12 1 2 3 4	15.2 15.7 16.3 16.7 17.2 18.3 19.1 19.6 19.7 Gain/Range 10.9 12.3 12.7 13.3	3.9 2.6 1.9 1.4 0.6 0.4 0.3 0.2 : 1000/±0.01 11 4.1 3.1 2.1	5.15 10.28 10.55 11.08 3.50 13.4 66.2 159 V 5.03 10.0 10.1 10.1
4 5 6 7 8 9 10 11 12 1 2 3 4 5	15.2 15.7 16.3 16.7 17.2 18.3 19.1 19.6 19.7 Gain/Range 10.9 12.3 12.7 13.3 13.8	3.9 2.6 1.9 1.4 0.6 0.4 0.3 0.2 1000/±0.01 11 4.1 3.1 2.1 1.5	5.15 10.28 10.55 11.08 3.50 13.4 66.2 159 V 5.03 10.0 10.1 10.1 10.1 10.2
4 5 6 7 8 9 10 11 12 1 2 3 4 5 6	15.2 15.7 16.3 16.7 17.2 18.3 19.1 19.6 19.7 Gain/Range 10.9 12.3 12.7 13.3 13.8 13.8 14.4	3.9 2.6 1.9 1.4 0.6 0.4 0.3 0.2 : 1000/±0.01 11 4.1 3.1 2.1 1.5 1.0	5.15 10.28 10.55 11.08 3.50 13.4 66.2 159 V 5.03 10.0 10.1 10.1 10.1 10.2 10.3
4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7	15.2 15.7 16.3 16.7 17.2 18.3 19.1 19.6 19.7 Gain/Range 10.9 12.3 12.7 13.3 12.7 13.8 14.4 14.7	3.9 2.6 1.9 1.4 0.6 0.4 0.3 0.2 : 1000/±0.01 11 4.1 3.1 2.1 1.5 1.0 0.8	5.15 10.28 10.55 11.08 3.50 13.4 66.2 159 V 5.03 10.0 10.1 10.1 10.1 10.2 10.3 10.6
4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8	15.2 15.7 16.3 16.7 17.2 18.3 19.1 19.6 19.7 Gain/Range 10.9 12.3 13.3 13.8 14.4 14.7 15.0	3.9 2.6 1.9 1.4 0.6 0.4 0.3 0.2 : 1000/±0.01 11 4.1 3.1 2.1 1.5 1.0 0.8 0.6	5.15 10.28 10.55 11.08 3.50 13.4 66.2 159 V 5.03 10.0 10.1 10.1 10.1 10.2 10.3 10.6 11.1
4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 7 8 9	15.2 15.7 16.3 16.7 17.2 18.3 19.1 19.6 19.7 Gain/Range 10.9 12.3 13.3 13.8 14.4 14.7 15.0 15.4	3.9 2.6 1.9 1.4 0.6 0.4 0.3 0.2 : 1000/±0.01 11 4.1 3.1 2.1 1.5 1.0 0.8 0.6 0.5	5.15 10.28 10.55 11.08 3.50 13.4 66.2 159 V 5.03 10.0 10.1 10.1 10.1 10.2 10.3 10.6 11.1 3.50
4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 7 8 9 10	15.2 15.7 16.3 16.7 17.2 18.3 19.1 19.6 19.7 Gain/Range 10.9 12.3 13.3 13.8 14.4 14.7 15.0 15.4 16.1	3.9 2.6 1.9 1.4 0.6 0.4 0.3 0.2 : 1000/±0.01 11 4.1 3.1 2.1 1.5 1.0 0.8 0.6 0.5 0.3	5.15 10.28 10.55 11.08 3.50 13.4 66.2 159 V 5.03 10.0 10.1 10.1 10.1 10.2 10.3 10.6 11.1 3.50 13.4
4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 7 8 9	15.2 15.7 16.3 16.7 17.2 18.3 19.1 19.6 19.7 Gain/Range 10.9 12.3 13.3 13.8 14.4 14.7 15.0 15.4	3.9 2.6 1.9 1.4 0.6 0.4 0.3 0.2 : 1000/±0.01 11 4.1 3.1 2.1 1.5 1.0 0.8 0.6 0.5	5.15 10.28 10.55 11.08 3.50 13.4 66.2 159 V 5.03 10.0 10.1 10.1 10.1 10.2 10.3 10.6 11.1 3.50

LSB Voltage Vs Resolution Index

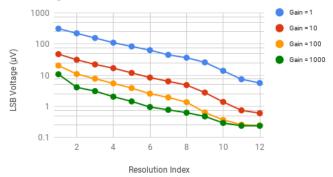


Figure A.3.1.3. T7 analog input LSB voltage over various gains and resolution index settings.

.....

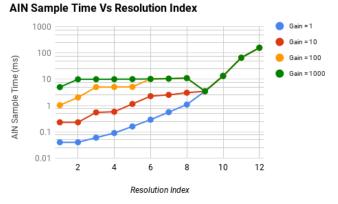


Figure A.3.1.4. T7 AIN sample times for analog inputs over various gains resolution index settings.

Notes:

[1] The equation used to approximate the EFCR is determined using +/-3.3 standard deviations from the RMS noise measured on an AIN channel.

[2] The default value for RESOLUTION_INDEX is 0, which equates to 8 for T7 command-response reads, 9 for T7-Pro command-response reads, and 1 for T7 & T7-Pro stream reads.

[3] The T7-Pro is equipped with a 24-bit delta-sigma ADC, in addition to the standard 16-bit ADC. Analog conversions occur on the 16-bit ADC when resolution index values 0-8 are used. Analog conversions occur on the 24-bit ADC when resolution index values 9-12 are used (command response mode only).

A-3-2-3 T7 Signal Range [T-Series Datasheet]

Log in or register to post comments

T7 AIN Signal Range

The instrumentation amplifier in the T7 (see Figure 4.2-2) provides 4 different gains:

- x1 (RANGE is ±10 volts)
- x10 (RANGE is ±1 volts)
- x100 (RANGE is ±0.1 volts)
- x1000 (RANGE is ±0.01 volts)

The input ranges are straightforward for single-ended measurements, but can be a little tricky for<u>differential measurements</u> if neither channel (positive or negative) is at 0 volts.

The figures below show the approximate signal range of the T7 analog inputs at gains of x1 and x1000.

Input Common-Mode Voltage, known as V_{cm}, is:

 $V_{cm} = (V_{pos} + V_{neg})/2$

The voltage of any input compared to GND should be within the VM+ and VM- rails by at least 1.5 volts, so if VM+ and VM- is the typical \pm 13 volts, the signals should be within \pm 11.5 volts compared to GND. See <u>Table A5-8</u> for more information on VM+ and VM-.

Example #1 - invalid because V_{cm}=10.0 with V_{out}=10.0 is invalid:

Suppose a differential signal is measured, where:

- V_{pos} is 10.05 volts compared to GND
- V_{neg} is 9.95 volts compared to GND
- G=100 (RANGE=±0.1)

That means:

- \circ V_{cm}=10.0 volts,
- V_{diff}=0.1 volts,
- and the expected V_{out}=10.0 volts.

Figures for G=10 and G=100 are not shown, but V_{cm} =10.0 volts and V_{out} =10.0 volts is not valid at G=1 or G=1000, so it is not valid for gains in between.

Example #2 - invalid because Vpos compared to GND is too high:

Suppose a differential signal is measured, where:

- V_{pos} is 12.0 volts compared to GND
- $\circ~V_{neg}$ is 8.0 volts compared to GND
- G=1 (RANGE=±10)

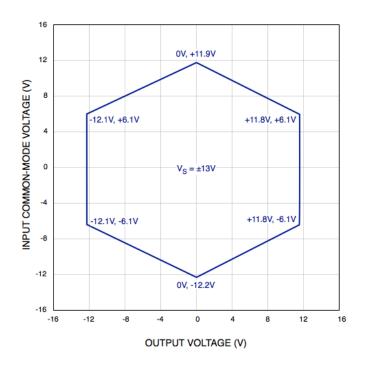
That means:

- V_{cm}=10.0 volts,
- V_{diff}=4.0 volts,
- and the expected V_{out}=4.0 volts.

This looks almost okay in the G=1 figure below, but the voltage of V_{os} compared to GND is too high so this is not valid.

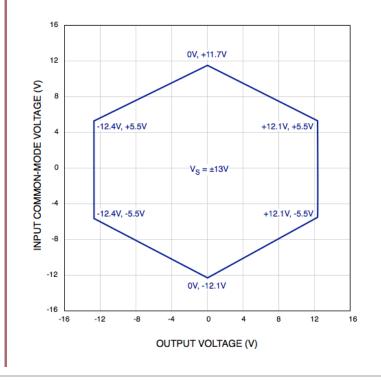
Example #3 - valid:

Suppose a single-ended signal is measured, where:


- V_{pos} is 10.0 volts compared to GND
- G=1 (RANGE=±10)

That means

mai mouno.


- $\circ~V_{cm}{=}5.0$ volts,
- V_{diff}=10.0 volts,
- $\circ~$ and the expected $V_{out}{=}10.0$ volts.

This is fine according to the figure below.

Input Common-Mode Voltage Range vs. Output Voltage, G = 1

Input Common-Mode Voltage Range vs. Output Voltage, G = 1000

